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Under mild additional assumptions this paper constructs quasi-interpolants in
the form

fh(x)= :

+�

j=&�

f (hj) .h\x
h

& j+ , x # R, h>0, (0.1)

with approximation order l&1, where .h(x) is a linear combination of translates
�(x& jh) of a function � in Cl(R). Thus the order of convergence of such operators
can be pushed up to a limit that only depends on the smoothness of the function
�. This approach can be generalized to the multivariate setting by using discrete
convolutions with tensor products of odd-degree B-splines. � 1997 Academic Press

Key Words: radial basis function; quasi-interpolation; Strang�Fix conditions;
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1. INTRODUCTION

If the Fourier transform �� of a function � : R � R with certain additional
properties has zeros of order l at 2?j{0, j # Z, then Strang�Fix theory
implies that there is a linear combination . of the translates �(x& j) of �
such that the quasi-interpolation

Qfh(x)= :
j # Z

f ( jh). \x
h

& j+ (1.1)
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is convergent and has approximation order l with respect to h � 0. This
paper treats two problems:

1. Is the special quasi-interpolation

:
j # Z

f ( jh)� \x
h

& j+ (1.2)

defined by � itself convergent and what is its order of approximation? We
will investigate the influence of the behaviour of the Fourier transform ��
of � near zero to the approximation order of (1.2).

2. The classical Strang�Fix condition [10] is a necessary and suf-
ficient condition for a quasi-interpolant of the above form (1.1) to have a
certain approximation order. But can we construct other quasi-interpolants
from � with higher approximation order? How far can the approximation
order of variations of (1.2) be increased for a fixed given �?

In the second situation, we shall leave the classical ``stationary'' setup for
quasi-interpolants of the form (1.1). This idea is not new. It was indicated
in [9] by Dyn and Ron. See also [6] and [1], where estimates similar to
those of our Section 2 were established. Usually, the sampling distance h of
the data f ( jh) is identical to both the shift distance $ and the scaling
parameter _ for the basic function � in the sense that the quasi-interpolant
is in the span of translates �(( } & j$)�_). In contrast to this, we finally use
shift $=h2 and scale h with the sampling distance h, and we are interested
in explicit constructions of quasi-interpolants

Qfh(x)= :
j # Z

f ( jh),h \x
h

& j+ , (1.3)

where .h is a linear combination of translates �( } &kh), such that we
altogether work in the span of functions

�\ } & jh&kh2

h + , j, k # Z,

to recover data f ( jh), j # Z.
In the sense of the literature on principal shift-invariant spaces ([5, 6,

14]) we thus work in the scale of spaces [Sh2(�( } �h))]h , but our special
quasi-interpolation operators do not attain the optimal approximation
orders (in terms of distances) that are possible in this scale. Those orders
are independent of special operators, but we want to stick to simple
operators like (1.3) based on sampling at distance h. Thus we do not study
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the general approximation orders in these spaces, since we confine our-
selves to the special quasi-interpolants (1.3), where .h is based on ``other''
shifts and dilates of �. Nor is it relevant at the outset that we finally end
up with shifts $=h2: our main ingredient is the data sampling at distance
h, and this is why we keep h as an index to the quasi-interpolants (1.3).
Our results imply that the attainable order of convergence for quasi-inter-
polants (1.3) mainly depends on the smoothness of the function �, and we
provide an explicit construction that makes full use of this fact. Applica-
tions include the construction of quasi-interpolants based on data f ( jh)
that achieve arbitrarily high approximation orders, if � is chosen to be a
multiquadric or a Gaussian.

2. CONVERGENCE ORDERS OF QUASI-INTERPOLANTS

We first consider quasi-interpolants of the special form

fh(x)= :
+�

j=&�

f (hj)� \x
h

& j+ , x # R, h>0, (2.1)

for functions f # C(R) that are inverse Fourier transforms

f (x)=
1

2? |
+�

&�
f� (t)eixt dt, x # R, (2.2)

of functions f� # L1(R). The quasi-interpolant (2.1) is supposed to use a
basic function � # Cl(R) with

Ck(�) := max
0�!�1

:
+�

j=&�

|�(k)(!& j)|<� (2.3)

for 0�k�l.
In the terminology of shift-invariant spaces this is a specific form of

approximation in a scale [Sh] of principal shift-invariant subspaces

Sh :=[g # S : g= fh for f # S]

of the shift-invariant space

S :=[ f # C(R), f� # L1(R), (2.2)].

Note that we do not attempt to characterize Sh in an intrinsic way, e.g., by
a summability condition on coefficients in (2.1). For our purposes it suffices
to provide L� bounds for the error of quasi-interpolation of f # S by
fh # Sh .
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We start with an integral representation for f (k)
h that is based on Fourier

transform techniques as used in [1] and [6] for instance, and we skip over
the proof, which can be reduced to an application of Poisson's summation
formula to the function whose Fourier transform is �(k)(x+ } ). If f # C(R)
satisfies (2.2) with f� # L1(R) and if � # Cl(R) is a function with (2.3) for
0�k�l, then the quasi-interpolant (2.1) exists and has derivatives up to
order l that can be expressed by

f (k)
h (x)=

1
2? |

+�

&�
f� (t)eixtIk, h(x, t) dt (2.4)

with a continuous h-periodic function

Ik, h(x, t) :=h&k :
+�

j=&�

e&i(x&hj)t�(k)\x
h

& j+ (2.5)

that has a Fourier series representation

Ik, h(x, t)= :
+�

j=&�

ck, h, j (t)e2?ijx�h

with coefficients

ck, h, j (t)=\ j
h+

k

(2?j+ht)k �� (2?j+ht). (2.6)

Now we assume f satisfies

Bk( f ) :=|
+�

&�
| f� (t)tk| dt<� (2.7)

for 0�k�L. Then

f (k)(x)=
1

2? |
+�

&�
f� (t)(it)keixt dt

for 0�k�L and

f (k)
h (x)& f (k)(x)=

1
2? |

+�

&�
f� (t)eixt(Ik, h(x, t)&(it)k) dt (2.8)
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for 0�k�min(l, L). A similar error representation was used in [17] and
[20] to prove error bounds for radial basis function interpolation. Note
that this means that we work in a subspace

Sk :=[ f # Ck(R), f� # L1(R) and (2.7)]

measuring smoothness of functions in S.
To get a bound for this representation of the error, we require additional

assumptions on �. Let the Fourier transform �� of � have zeros of order l1

in 2?j for all j{0. Furthermore, let �� &1 have a zero of order l0 in 0.
More specifically, we require �� # Cl2(R), l2�max(l0 , l1), and use

Taylor's formula to write

�� (2?j+t)=�� (l1)(2?j+t{j (t)) tl1�l1 !, (2.9)

�� (t)&1=�� (l0)(t{0(t)) tl0�l0 !, (2.10)

with {m(t) # [0, 1] for all m # Z and all t # R. Finally, we define

Dk, m(�) :=max
|'|�1
|!|�1

:
j{0

|2?j+!|k |�� (m)(2?j+')| (2.11)

for 0�m�l2 and assume

Dk, m(�)<�, 0�k�K,

for some nonnegative integer K.

Theorem 2.1. Assume the quasi-interpolant (2.1) to be generated by a
function � # Cl(R) with a Fourier transform �� satisfying (2.9), (2.10), and
(2.11). If the quasi-interpolant is evaluated for functions f # C(R) with
Bk( f )<�, 0�k�L, then

& f (k)
h & f (k)&��Chd

for 0�k�min(l, L&l0 , K, l1),

d=min(l0 , l1&k),

and all h>0. The constant C is the maximum of

1
2? \BL( f )(1+Ck(�))+

Bk+l0
( f )

l0 !
&�(l0)&�, [&1, +1]+

Bl1
( f )Dk, l1

(�)
l1! +

for 0�k�min(l, L&l0 , K, l1).
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Proof. We first consider the integrand (2.8) on |t|>h&1. If we use (2.3)
to get a uniform bound

|Ik, h(x, t)|�Ck(�)h&k, 0�k�l,

for all x, t # R and h>0, then we have

1
2? |

|t|�1�h
| f� (t)eixt(Ik, h(x, t)&(it)k)| dt

�
1

2? |
|t|�1�h

| f� (t)| (Ck(�)h&k+|t|k) dt

�
1

2? |
|t|�1�h

| f� (t)| (Ck(�)+1)|t| k dt

�
1

2?
(Ck(�)+1) |

|t|�1�h
| f� (t)| } |t|k |ht| L&k dt

�
1

2?
(Ck(�)+1)hL&kBL( f )

for 0�k�min(l, L) and all h>0. For |t|<1�h we split the integrand via

Ik, h(x, t)&(it)k=ck, h, 0(t)&(it)k+ :
j{0

ck, h, j (t)e2?ijx�h.

The first part is bounded by

1
2? |

|t|<1�h
| f� (t)| |ck, h, 0(t)&(it)k| dt

=
1

2? |
|t|<1�h

| f� (t)| |t|k |�� (ht)&1| dt

�
hl0

2?l0 ! ||t|<1�h
| f� (t)| |t|k+l0 |�� (l0)(ht{0(t))| dt

�
hl0

2?l0 !
Bk+l0

( f ) } max
|!|�1

|�� (l0)(!)|
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for k+l0�L. The second part is

1
2? |

|t|<1�h
| f� (t)| } :

j{0

ck, h, j (t) } dt

=
h&k

2? |
|t|<1�h

| f� (t)| :
j{0

|2?j+ht|k |�� (2?j+ht)| dt

=
h&k+l1

2?l1 ! |
|t| <1�h

| f� (t)| |t| l1 :
j{0

|2?j+ht|k |�� (l1)(2?j+ht{j (ht))| dt

�
hl1&k

2?l1 !
Bl1

( f )Dk, l1
(�). (2.12)

Now everything combines into the assertion of the theorem. K

Remarks. The principal consequence of Theorem 2.1 is that the rate of
convergence of derivatives is mainly tied to l0 , while the admissible orders
of derivatives are mainly controlled by l1 . Thus, a small value of l0

together with a large value of l1 will provide slow convergence of high-
order derivatives, and vice versa. The next section will provide techniques
for modification of given quasi-interpolants in order to yield higher values
of l0 and l1 .

3. INCREASE OF APPROXIMATION ORDER

We first consider simple techniques to improve the approximation order
of a quasi-interpolant by suitable modifications that imply an increase of
l0 . This has been done already by [3, 4, 8, 16] and possibly others, but
we shall include the explicit construction recipe for completeness and in
order to be able to refer to it in the next section.

Let a quasi-interpolant (2.1) be generated by a given symmetric function
� with �� # Cl2(R), and let the assumptions of Theorem 2.1 be satisfied.
Then l0�l2 holds by definition, but there is a finite linear combination .
of translates of � such that . satisfies Theorem 2.1 with l0 replaced by l2

and with an appropriately modified constant C. In other words, by taking
fixed linear combinations of � one can always push l0 up to l2 .

Indeed, by Taylor's formula we have

�� (t)=q(t2)+O(tl2) for t � 0

with a polynomial q satisfying q(0)=1. Then there is another polynomial
p with p(0)=1 and

p(t2) q(t2)=1+O(tl2) for t � 0,
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which implies

p(t2) �� (t)=1+O(tl2) for t � 0.

Now let the trigonometric polynomial

T(eit)=:
j

dj eijt= p(t2)+O(tl2)

be a sufficiently good approximation of p around the origin. Then one
defines

.(x)=:
j

dj �(x+ j)

to get

.̂(t)=.̂(t) } T(eit)

=1+O(tl2) for t � 0.

This makes Theorem 2.1 applicable for l0 replaced by l2 , and the con-
stants Ck and Dk, m of the preceding section will take an additional factor
�j |dj |.

4. INCREASE OF THE ORDER OF DERIVATIVES

We now want to modify a function � in such a way that l1 is increased.
This will boost up the bound on the order of convergent derivatives, and
it will be done via smoothing by convolution. We shall first consider con-
volution with B-splines, and later we shall employ discrete convolution to
get a numerically accessible quasi-interpolant based on the introduction of
additional shifts of � with spacing h2. Our assumptions on � will be much
weaker than those required by Theorem 2.1, but the quasi-interpolation
constructed by function ., resulting from our construction, will have the
same error bounds as given by Theorem 2.1 with l1=l.

Theorem 4.1. Let � # Cl with �� # L1(R) & Cl(R) be a basis function for
quasi-interpolation, and assume

C0(�)= max
0�!�1

:
+�

j=&�

|�(!& j)|<�.

If Bl is the l th order symmetric uniform B-spline, then the basis function
.l=� V Bl&1 satisfies Theorem 2.1 with l1(.l)=l. Thus .l satisfies the
Strang�Fix condition of order l and

Ck(.l)<�, 0�k�l. (4.1)
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Proof. Let /=/[&1�2, 1�2] be the characteristic function on [&1�2, 1�2],
and define the B-spline

Bm&1=/ V } } } V /

as the m-fold convolution of / with itself. Now we define

.m :=Bm&1 V �=/ V .m&1

for 1�m�l, .0 :=�. Then

.̂l(t)=B� l&1(t) } �� (t)=�� (t) } sincl \ t
2+

has the required behaviour at all points 2?j, j # Z"[0]. It remains to show
(4.1), and this follows from

Ck(.l)=C0(Dk.l)=C0(� V B (k)
l&1)

�C0(�)&B (k)
l&1&1 ,

where we interpret the norm in the last line as the total mass of the
measure B (k)

k&1 for k=l. K

Now we have constructed a function .l from the function � by convolu-
tion such that the function .l satisfies the Strang�Fix condition of order l

and Theorem 2.1 with l1(.)=l. Unfortunately, the function .l is defined
by convolution and is not expressible via translates of the original function
�. Thus we now take the discrete convolution instead of the usual convolu-
tion. If we replace the integration by a high-order quadrature formula for
equidistant data, we can replace .l by a function .l, h , depending on l and
h, which is a linear combination of translates �(x& jh), such that

&. (k)
l, h&. (k)

l &�=O(hl&k) (4.2)

holds for h � 0. If we define Qh f as the quasi-interpolation of (2.1) with
� :=.l, h and Q� h f with � :=.l , then for f # L1(R) we find

&Q (k)
h f &Q� (k)

h f &�

=max
x } :

�

j=&�

f ( jh) \. (k)
l, h\x

h
& j+&.(k)

l \x
h

& j++}
�\ :

�

j=&�

| f ( jh)| ) max
y

( |. (k)
l, h( y)&. (k)

l ( y)|+
=O(hl&k&1). (4.3)
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We summarize the above discussion to our main theorem

Theorem 4.2. Let � have the properties

� # Cl, &�(l)&�<�, C0(�)<�,

and let its Fourier transform �� satisfy

�� # L1(R), �� # C l(R)

with (2.11) for 0�k, m�l. Then there is a function .l, h consisting of linear
combinations of the translates �(x& jh), such that the quasi interpolation
(2.1) with � :=.l, h has the error estimate

& f (k)
h (x)& f (k)(x)&�=O(hl&k&1), 0�k�l&1

for any function f # L1 with B2l( f )<�.

Proof. By the construction of Section 3 there is a trigonometric polyno-
mial

T(eit)=: djeijt,

and by Theorem 4.1 there is a B-spline of degree l such that the function

.l=: djBl V �( } & j)

satisfies the complete Strang�Fix condition of order l; in other words, it
satisfies the conditions of Theorem 2.1 with l0=l1=l. Using discrete con-
volution with a quadrature formula we get a function .l, h such that the
order of the approximation is estimated as in (4.3). Then Theorem 2.1
yields our assertion.

Remark. Our construction can be summarized as follows: If � # Cl

satisfies the mild additional conditions of Theorem 4.2, we can construct
quasi-interpolants in the form

Q fh(x)= :
+�

j=&�

f (hj).l, h \x
h

& j+ , x # R, h>0

= :
+�

j=&�

f (hj) } :
k

c (l)
k (h)� \x

h
& j&kh+ (4.4)

with approximation order l&1, where .l, h(x) is a linear combination of
translates �(x& jh) of the function � but depends on h. Note that the data
are still sampled at points with distance h, while the set of scaled translates
of � now uses shifts h and h2. In the terminology of approximation from
shift-invariant spaces these functions live in a scale [Sh2] instead of [Sh],
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and therefore a general optimal approximation in these spaces can and will
have a better approximation order. However, our special linear quasi-inter-
polant uses function values of spacing h only. The increase of approxima-
tion order, as described in this section, is achieved by using more basis
functions, not by using more data. The order of convergence of such
operators can be pushed up to a limit that only depends on the smoothness
of the function �. This approach can be generalized to the multivariate
setting by using discrete convolutions with tensor products of odd-degree
B-splines.

Example 1. For multiquadrics ,(x)=- c2+x2, we choose at first
�(x)=(,(x+1)&2,(x)+,(x&1)). Then l1(�)=2, and with the Strang�
Fix condition we get the approximation order 2, which is similar to results
in [2, 7, 19]. But Refs. [11, 20] imply that the order of approximation by
interpolation exceeds any l, if the function f is very smooth and if c is fixed.
Note here that the usual Strang�Fix theory scales c like O(h) for h � 0.
Our result bridges the gap between these two approaches. Since
�(k)(x)=O(x&(k+3)), we can construct for any l a quasi-interpolant with
approximation order l&1 for functions f # L1 with B2l( f )<�.

Example 2 (See also [1]). The Gaussian distribution �(x)=e&a2x2
is

often criticized in the literature on radial basis functions, because it fails to
satisfy the Strang�Fix conditions. But by [17] for some very smooth func-
tions f the order of approximation can exceed any l. Using Theorem 4.2 for
any l we can always construct a quasi-interpolant with approximation
order l&1 for f # L1 and B2l( f )<�.

Example 3. The function �(x)=(1&x2)l+1
+ satisfies no Strang�Fix

condition, but from our approach the approximation order of the quasi-
interpolation (4.4) is at least l&1. We can get a similar result for B-splines,
too.
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